ERS Feature Extraction using STFT and PSO for Customized BCI System
نویسندگان
چکیده
منابع مشابه
Facial expression recognition with enhanced feature extraction using PSO & EBPNN
Human face-to-face communication plays an important role in human communication and interaction. In recent years, several different approaches have been proposed for developing methods of automatic facial expression analysis. In this paper we have proposed a novel facial expression recognition system which chooses the optimized features using particle swarm optimization (PSO) from the features ...
متن کاملMedical Image Retrieval System Using PSO for Feature Selection
-Content-based image retrieval (CBIR) is a widely researched area, with various techniques proposed in literature for feature extraction, classification and retrieval. But, when database size increases, overall retrieval performance deteriorates significantly. Features in pattern recognition are individual measurable heuristic properties of the image under observation. Choosing discriminating/i...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملComparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP
There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems. This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems. The techniques are based on Power Spectrum Density Analysis (PSDA), Fast Fourier Transform (FFT), Hilbert- Huang Transform (H...
متن کاملFeature Selection using PSO-SVM
method based on the number of features investigated for sample classification is needed in order to speed up the processing rate, predictive accuracy, and to avoid incomprehensibility. In this paper, particle swarm optimization (PSO) is used to implement a feature selection, and support vector machines (SVMs) with the one-versus-rest method serve as a fitness function of PSO for the classificat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Intelligent Systems
سال: 2012
ISSN: 1976-9172
DOI: 10.5391/jkiis.2012.22.4.429